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We study the distribution of threshold forces at the depinning transition for an elastic system of finite size,
driven by an external force in a disordered medium at zero temperature. Using the functional renormalization
group technique, we compute the distribution of pinning forces in the quasistatic limit. This distribution is
universal up to two parameters, the average critical force and its width. We discuss possible definitions for
threshold forces in finite-size samples. We show how our results compare to the distribution of the latter
computed recently within a numerical simulation of the so-called critical configuration.
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I. INTRODUCTION

The dynamics of elastic objects driven by an external
force in disordered media has attracted considerable theoret-
ical and experimental interest during recent years �1–3�. The
reason is twofold. On one hand, elastic objects in disordered
media exhibit the rich behavior of glassy systems and thus
their study can help us to understand the physics of more
complex systems such as spin glasses �4� or random field
systems �5�. On the other hand, the motion of elastic objects
in disordered media is an adequate description of many ex-
perimental systems. One can divide these systems into two
classes. The first class comprises periodic systems, the most
prominent examples being charge-density waves �CDW� in
solids. These start sliding when the applied electric field be-
comes large enough �6�. Vortex lines in disordered supercon-
ductors form a quasiordered periodic Bragg glass phase
�7,8�. The second class includes propagating interfaces such
as domain walls in magnetically or structurally ordered sys-
tems �9�, interfaces between immiscible fluids in porous me-
dia �10� or dislocation lines in metals �11�. To unify the
mathematical description of these different systems one uses
the notion of “manifolds.” In all these systems the interplay
between quenched disorder and elasticity leads to a compli-
cated response of the system to an applied external force. At
zero temperature, a driving force f exceeding a certain
threshold value fc is required to set the elastic manifold into
motion. This depinning transition shares many features with
critical phenomena �12�: characteristic lengths diverge close
to the transition as ���f − fc�−� and the system becomes ex-
tremely sensitive to small perturbations. Following the de-
scription of standard critical phenomena, one can identify the
ordered phase with the moving phase with force f � fc, and
the order parameter with the velocity v, which vanishes as
v��f − fc�� at the transition. One also introduces the dy-
namic exponent z, which relates time and space by t�xz.
The critical force fc, which must be tuned to reach the scale-
invariant regime, plays a role similar to the critical tempera-
ture in thermal phase transitions. There are many subtleties
however, within this analogy, since depinning is a nonequi-
librium transition at zero temperature, where quenched dis-
order dominates. As the corresponding static problem of
elastic manifolds in disordered media �13�, the depinning
problem suffers from two peculiarities when compared to

standard critical phenomena: First, an infinite set of operators
becomes relevant simultaneously, below the internal upper
critical dimension d�duc=4. Second, their study is more
difficult due to the dimensional reduction phenomenon,
which renders naive zero-temperature perturbation theory
trivial, hence useless. The way out involves first parametriz-
ing the set of relevant operators into a function, ��u�, the
second cumulant of the random pinning force. It was shown
in Refs. �14,15� that the corresponding functional renormal-
ization group �FRG� provides an adequate description of the
depinning transition if one considers the nonanalytic renor-
malized function ��u�. It was shown only recently that the
FRG can be unambiguously extended to higher loop order
and that the underlying nonanalytic field theory is renormal-
izable �16,17�. The FRG equation for ��u� has two main
nontrivial stable fixed points, which describe periodic and
interface universality classes. Both of them exhibit a cusp
singularity of the form �*�u�−�*�0���u� at small u. This
cusp accounts for the existence of the critical threshold force
fc��*��0+�. The corresponding critical exponents have been
computed to second order in �=4−d �16,17�.

Despite this progress many open questions remain.
Among them is the problem of sample-to-sample fluctua-
tions, i.e., the probability distributions of a given observable
and their relation to extreme value statistics. These were
studied mostly for static quantities. The distribution of the
energy of pinned manifolds was analyzed in Refs. �18,19�.
The distribution of the mean squared width of an interface at
the depinning transition was calculated using a Gaussian ap-
proximation for the displacement field, yielding a result quite
close to numerics �20�. It was shown how systematic correc-
tions can be computed in the field theory of depinning within
an �=4−d expansion �21�. One expects sample-to-sample
fluctuations to play an important role in the dynamics too,
leading to a broad distribution of time scales. The divergence
of the typical energy barrier with scale, responsible for the
ultraslow creep motion, is predicted by phenomenological
arguments �7�. A numerical study in Ref. �22� of the distri-
bution of barriers confirms that the typical barrier scales as
the energy minima, as predicted by one-loop FRG studies
�23�. The more difficult question of predicting the distribu-
tion of energy barriers was addressed in Ref. �24� using the
FRG, and in Ref. �25� using extreme value statistics.

An important and debated question is to characterize the
finite-size fluctuations of the critical force and whether they
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obey finite-size scaling �FSS�. Similar questions were inves-
tigated recently in the context of heteropolymer unbinding
transitions �the role of critical force being played there by
critical temperature� where violation of FSS was found �26�.
In the depinning problem, one difficulty is to define properly
the critical force and its fluctuations in the limit of large
interface �internal� size L. A recent and efficient algorithm
�27� allows us to obtain exactly the critical force fc of an
interface in a periodic medium of period M �i.e., a cylinder�,
as well as the so-called critical configuration. The latter is
defined as the last blocking configuration as f is increased up
to fc, which also defines fc= fc�L ,M�. One can refer to this
definition as an extremal configuration in a given sample.
The finite-size sample-to-sample distribution of fc�L ,M� was
computed numerically �28� and found to depend on the as-
pect ratio k=M /L� of the cylinder. This should be expected
since for large k one recovers a zero-dimensional problem
and the interface will be blocked by rare disorder configura-
tions, hence dominated by extremal statistics. However, this
result seems to depend on the precise definition and one may
ask whether a more fundamental definition exists, with no
need to specify a value for k. An alternative approach is to
define the observables at the depinning transition as the time
average in the moving state at fixed velocity v, in the limit
v→0+. This definition, to which we refer as the quasistatic
depinning limit, is usually associated to the FRG approach of
the depinning transition. Observables calculated in this ap-
proach must, a priori, be distinguished from those computed
in the critical configuration. Since the time average is usually
performed in a steady state, to avoid dominance by history
dependence, it also requires specifying boundary conditions.
It is widely believed that both approaches give the same
result, at least for �N=1 component� interfaces, since in the
limit of infinite systems �L→	� all quasistatic configurations
should have the same statistical properties and the critical
force fc should be self-averaging. However, it is less clear
how these approaches compare when applied to finite-size
fluctuations where the dispersion in local pinning forces be-
comes important.

In the present paper we study the distribution of the
threshold forces by means of the functional renormalization
group. Within the field theory we propose two definitions of
the critical force fc�L� in finite size L and show that they are
identical to one loop in the renormalized theory. We compute
the cumulants of fc�L� and extract the distribution, which is
found to be universal, up to a shift in f �the critcal force fc�
and one scale parameter �the width of the distribution�. All
results are valid within the �=4−d expansion and extrapola-
tions to low dimension are discussed. The critical force stud-
ied here is defined from a fixed center-of-mass ensemble. As
we point out it can be, in principle, obtained in numerics.
Since it does not refer to any transverse size M, it is more
fundamental than the one used in the numerical studies on a
cylinder. We discuss how the latter one can, in principle, be
recovered.

The paper is organized as follows. Section II introduces
the model and the FRG treatment of the depinning transition.
In Sec. III we compute the bare distribution of threshold
forces to one-loop order using an improved perturbation

theory, and renormalize it for the case of an elastic interface.
In Sec. IV we discuss the renormalization for periodic sys-
tems. In Sec. V we discuss the relation between the distribu-
tion of critical forces in the quasistatic limit and in the criti-
cal configuration.

II. MODEL AND FRG DESCRIPTION

Let us consider the motion of a one-component elastic
manifold with short-range elasticity. The configuration of the
manifold can be described by a scalar displacement field uxt,
where x denotes the d-dimensional internal coordinate of the
manifold. We study the overdamped dynamics of a manifold
in the disordered medium, which obeys the following equa-
tion of motion:


�tuxt = c�2uxt + F�x,uxt� + f , �1�

where 
 is the bare friction and c is the elasticity. The
quenched random force F�x ,u� can be chosen Gaussian with
zero mean and variance

F�x,u�F�x�,u�� = ��u − u���d�x − x�� . �2�

For periodic systems the function ��u� is periodic, while for
interfaces it decays exponentially for large u. In the latter
case, in contrast to the statics, at depinning both random
bond �RB� and random field �RF� microscopic disorder
renormalize to the same fixed point, which has RF character-
istics, so that we can restrict ourselves to the latter case. a is
the width of the function ��u�. To make the problem well
defined we imply an UV cutoff at scale �−1. We consider a
finite system of size L with periodic boundary conditions.
The size L serves as an IR cutoff, i.e., it plays the role of the
mass in the corresponding field theory. One can easily see
that due to the tilt symmetry the elastic constant remains
uncorrected to all orders so that we are free to fix c=1.

Below, starting in Sec. III we will find it convenient to
work in the comoving frame. To that end we shift uxt→vt
+uxt, such that �uxt�=0 and f → f −
v, where v
=L−d�	x�tuxt� is the velocity of the center of mass. Here the
angular brackets stand for the average over different initial
configurations �since we are studying zero-temperature dy-
namics� and the overline denotes the average over disorder
distribution. We will assume that a steady-state attractor has
been reached, hence that averages depend only on time dif-
ferences and not on a specific choice of initial conditions.

To study the dynamics of an elastic manifold efficiently,
we use the formalism of generating functionals. Introducing
the response field ûxt one can compute the average of the
observable A�ux,t� over dynamic trajectories with different
initial conditions for a particular disorder configuration as
follows:

�A�ux,t�� =
 D�u�D�û�A�ux,t�e−SF�u,û�. �3�

SF is the action for a particular realization of the disorder �a
particular sample�. To compute the average of the observ-
ables, which explicitly depends on the random force at the
position of the manifold, we introduce the source Jxt for the
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random force F so that the corresponding action reads

SF�u, û� = 

xt

iûxt�
�t − �2�uxt − 

xt

iûxt�F�x,uxt� + fxt�

− 

xt

JxtF�x,uxt� . �4�

After averaging over the disorder distribution, any observ-
able that depends on the displacement field and the random
force at the position of the manifold can be computed as
follows:

�A�ux,t�F�x1,ux1,t1
� ¯ F�xn,uxn,tn

��

= 
 �

�Jx1,t1
¯ �Jxn,tn


 D�u�D�û�A�ux,t�e−S�u,û�

J=0

.

S�u , û� is the effective action, which can be split into two
parts: the free part S0 being quadratic in fields and the inter-
action part Sint containing all nonlinear terms

S0 = 

xt

iûxt�
�t − �2�uxt − 

xt

iûxtfxt,

Sint = −
1

2



xtt�
�iûxt + Jxt���uxt − uxt���iûxt� + Jxt�� .

Setting Jxt=0 we recover the action used in Refs. �16,17�.
The quadratic part S0 gives the free response

�uq,tiû−q,0� = Rq,t =

�t�



e−q2t/
, �5�

while the free correlation function is Cq,t= �uq,tu−q,0�=0 at
zero temperature. The split diagrammatics for the perturba-
tion theory in disorder � was developed in Refs. �16,17�. It is
known that naive perturbation theory—obtained by taking
for � an analytic function—exhibits the property of dimen-
sional reduction and fails to describe the physics, giving, for
example, an incorrect roughness exponent. The physical rea-
son for this is the existence of a large number of metastable
states.

Let us briefly sketch the FRG analysis of the system under
consideration. Power counting shows that the whole function
��u� becomes relevant below duc=4 and thus one has to
renormalize the whole function. To extract the scaling behav-
ior one has to study the flow of the renormalized function �
under changing the IR cutoff towards infinity. Various
choices for the IR cutoff were discussed in Refs. �16,17�. A
convenient choice is to add a small mass m, so that the scal-
ing behavior can be extracted from the effective action
��u , û� of the theory as m decreases to zero. To study the
finite-size distribution of threshold forces, we use, as in Ref.
�21�, the system size L as the natural IR cutoff. Then any
integral over momentum q has to be replaced by the sum
according to the rule 	q→L−d�q, where the sum runs over all
q=2�k /L, k�Zd, k�0. Exclusion of the zero mode means
that we are working in an ensemble of fixed center of mass,
a point further discussed in Sec. V.

Let us define the rescaled disorder as

��u� =
1

�Ĩ1

L2�−��̃�uL−�� , �6�

where I1=L�Ĩ1=	q�q�−2 is the one-loop integral. It was shown
in Refs. �14,15� that the FRG equation, i.e., the flow equation
for the running disorder correlator, can be written to one-
loop order as

�L�L�̃�u��0 = �� − 2���̃�u� + �u�̃��u� −
1

2
���̃�u� − �̃�0��2��,

�7�

the two-loop flow equation being obtained in Refs. �16,17�.
“0” means a derivative at fixed bare quantities. The flow of
the correlator is such that ��u� acquires a cusp at the origin
u=0 at the Larkin scale Lc��c2a2 /��0��1/�. Beyond the Lar-
kin scale �L�Lc� the renormalized correlator is singular and
perturbation theory breaks down. Nevertheless, the flow

tends to a nontrivial fixed-point �FP� solution �̃*�u� with a
new value for the roughness exponent, which controls the
large-scale behavior. There are two FPs that describe inter-
faces and periodic systems, correspondingly. The former FP
has �=� /3+O��2�, while the latter one has �=0 due to peri-
odicity. The renormalization of the mobility gives the value
of the dynamic exponent,

z = 2 +
L
d

dL

R


0
= 2 − �̃��0� + O��̃2� , �8�

where 
R is the renormalized mobility. Other critical expo-
nents can be computed using the scaling relations

� =
1

2 − �
=

�

z − �
. �9�

To renormalize the theory, one needs an additional counter-
term for the excess force f −
v, which comes with an UV
divergence ��2. This term is analogous to the critical tem-
perature shift in the �4 theory, and gives the critical threshold
force fc

*. It is zero in the bare theory. We expect that in the
limit of an infinite system L→	, the critical force becomes
sample independent if there is the same distribution of dis-
order in each sample and thus limL→	 PL�f�=��f − fc

*�. How-
ever, the situation is different for finite systems. According to
the general theorem for random systems �29� there exists a
finite-size scaling correlation length �FS, which characterizes
the distribution of the observables in an ensemble of samples
and which, in principle, has to be distinguished from the
intrinsic correlation length �, which enters into correlation
functions. Approaching the critical point, the finite-size cor-
relation length diverges similar to the intrinsic correlation
length as �FS��f − fc�−�FS. In general, �FS is different from �,
and satisfies the inequality

�FS � 2/�d + �� , �10�

where d+� is the effective dimension of the disordered sys-
tem considered. Thus for an ensemble of samples of linear
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size L the width of the distribution of critical forces is char-
acterized by a scale �FS=L and reads

��fc�L� − fc
*�2� � L−2/�FS. �11�

For periodic systems �=0 and �=1/2 so that �FS�� for d
�4. For interfaces it was proposed �15� that �FS=�. While
�FS satisfies Eq. �10� with the equal sign in one-loop order, at
two-loop order the inequality becomes strict. As discussed in
Refs. �15,17� this difference is closely related to the stability
of the FP, which controls the scaling behavior.

III. DISTRIBUTION OF THRESHOLD FORCES

A. Perturbation theory

Let us show how the critical force distribution can be
computed within “improved” perturbation theory. Improved
means that we assume the disorder correlator ��u� to be
nonanalytic, since for analytic disorder perturbation theory
gives a zero-threshold force. Then using FRG we renormal-
ize our result to one-loop order. Effectively, this is a summa-
tion of an infinite subset of diagrams. We define the distribu-
tion of threshold force as follows:

P
L
�f

c
� =��� f

c
+ L

−d

x

F�x,vt + u
xt

��� . �12�

From now on we work in the comoving frame and the aver-
age is performed with the action S in the quasistatic limit v
→0+, as is usually done in the FRG theory of the depinning
transition.

Let us introduce the corresponding characteristic function

P̂L��� = �e−i�fc�L�� =
 dfce
−i�fcPL�fc� , �13�

which can be expressed through the cumulants �fc�L�n�c as
follows:

P̂L��� = exp��
n=1

	
�− i��n

n!
�fc�L�n�c� . �14�

The computation of the first cumulant to one loop is trivial.
The random force that the interface actually feels in the point
x is given by

�F�x,ux,t + vt�� =�

t1

��uxt − uxt1
+ v�t − t1��iûxt1�

= 

t1

���v�t − t1���Rx=0,t−t1
− Rx=0,t=0� .

�15�

We will adopt Ito’s prescription in which Rx,t=0=0. Note that
this corresponds to the definition 
�0�=0. Taking the quasi-
static limit v→0+, we obtain the well-known expression for
the average critical force

fc
* = − ���0+�


0

	

dtRx=0,t = − 

q

���0+�
q2 . �16�

Note that the critical force �16� diverges at large momentum
as �d−2 and therefore is not universal, i.e., it depends on
microscopic parameters. This is analogous to the shift of the
critical temperature in standard critical phenomena, caused
by fluctuations. As we know, this shift is also nonuniversal.
However, we expect that the distribution of critical forces for
a finite system around the average value is universal, once
the distribution is properly normalized. The computation of
the nth cumulant is more tricky. Before considering the gen-
eral case, let us show how this works for the second cumu-
lant. Using the generating functional, we can write down the
formal expression for the effective force-force correlator,

�F�x1,ux1,t + vt�F�x2,ux2,t + vt��

= ��0��d�x1 − x2� +�

t1

��ux1t − ux1t1
+ v�t − t1��iûx1t1

� 

t2

��ux2t − ux2t2
+ v�t − t2��iûx2t2� . �17�

The first term on the right-hand side of Eq. �17� is the bare
disorder distribution. It is given by Eq. �2� and is a pure
Gaussian distribution with zero mean. However, the moving
manifold explores a different distribution, that is an effective
distribution, which one can observe “sitting” on the moving
interface. The second term on the right-hand side of Eq. �17�
as well as the mean value �15� are the deviation of the effec-
tive distribution from the bare one. Only connected diagrams
contribute to the second cumulant. Integrating the second
term in Eq. �17� over fields with the weight e−s we obtain the
four connected diagrams shown in Fig. 1. The corresponding
expressions can be rewritten as follows:

FIG. 1. Diagrams Di �i=1, . . . ,4� contributing to the second
cumulant of the threshold force. We have adopted the split diagram-
matics used in Ref. �17�: the arrowed line indicates a response
propagator �5�; the dashed line indicates the split vertex
iûxtiûxt���uxt−uxt��. The corresponding expressions are given by
Eq. �19�.
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t1t2

���v�t − t1���Rx2−x1,t−t1
− Rx2−x1,t2−t1

� ,

���v�t − t2���Rx1−x2,t−t2
− Rx1−x2,t1−t2

� . �18�

To compute the contribution to the variance of the critical
force, we have to integrate over x1 and x2 and then multiply
by L−2d. This computation is more convenient in Fourier rep-
resentation;

D1 + D2 + D3 + D4

= L−d����0+��2

qt1t2

�Rq,t−t1
− Rq,t2−t1

��Rq,t−t2
− Rq,t1−t2

� .

�19�

Due to causality we have D4=0. The other diagrams read

D1 = − D2 = − D3 = L−d

q

����0+��2

�q2�2 . �20�

Summing all contributions we obtain

�fc�L�2�c = L−d��0� − L−d

q

����0+��2

�q2�2 . �21�

We have also derived Eq. �21� by using direct perturbation
theory instead of the generating functional.

The above calculation can be generalized to arbitrary n. It
can be simplified significantly if one takes into account that
all intermediate times ti must be smaller than the observation
time t : ti� t �i=1, . . . ,n�. For the nth cumulant �n�2� we
have

�fc�L�n�c = �− 1�n�n − 1�!L−d�n−1�

q

����0+��n

� 

t1¯tn

�Rq,t−t1
− Rq,t2−t1

��Rq,t−t2
− Rq,t3−t2

� ¯

��Rq,t−tn−1
− Rq,tn−tn−1

��Rq,t−tn
− Rq,t1−tn

� . �22�

Here the factor �n−1�! results from different contractions of
uxit

−uxiti
and ûxjtj

�i , j=1, . . . ,n� that form a closed loop. Ex-
panding the integrand in Eq. �22� we find that all terms give
the same contribution up to a factor of ±1, except for the
term composed only from the second response function in
each bracket. This term gives a closed loop of response func-
tions, which is zero by causality. Using the identity

�
i=0

n−1

�− 1�iCn
i = �− 1�n+1, �23�

where Cn
i is a binomial coefficient, we can simplify Eq. �22�

to

�fc�L�n�c = − �n − 1�!L−d�n−1�

q

����0+��n

q2n . �24�

We are now in a position to construct the characteristic func-
tion

ln P̂��� = −
1

2
��0�L−d�2 − Ld


q
�
n=1

	
�− 1�n

n
����0+�

q2 L−di��n

.

�25�

The latter is nothing but the Taylor series of the logarithm,
which allows us to rewrite Eq. �25� as

P̂��� = exp�−
1

2
��0�L−d�2 + Ld


q

ln�1 −
����0+��

q2 L−di��� ,

�26�

where we have taken into account that ���0+��0.
As follows from the above computation, the distribution

of the critical force can be related to the effective action
��u , û�, which is a generating functional for one-particle ir-
reducible �1PI� vertex functions �û¯û;u¯u

�E,S� with S external
fields u and E external fields û,

�û¯û;u¯u
�E,S� ��q̂i,�̂i�,�qj,� j��

=
�
i=1

S
�

�uqi,�i

�
j=1

E
�

�ûq̂j,�̂j

��u, û�

u=û=0

. �27�

Indeed, as already seen from the bare action the average
threshold force can be expressed as vertex function �û

�1,0�

�q=0,�=0� in the quasistatic limit v→0+. Analogously, the
higher-order cumulants can be identified as the higher-order
vertex functions according to

�fc�L�n�c = L−�n−1�d�û¯û
�n,0���qi = 0,�i = 0�� . �28�

The general properties of vertex functions �28� for even n
was discussed in Ref. �21�. In particular, it was noted that
loop diagrams that contribute to the vertex ��2n,0� precisely
cancel each other so that the result is given by minus the
missing contribution from acausal loops. It is easy to verify
by direct inspection of the Feynman diagrams that definitions
�12� and �28� give the same result in the one-loop approxi-
mation, but the question of their equivalence to all orders is
open.

B. Renormalization

In this section we focus on the interface problem, periodic
systems being considered in the next section. The distribu-
tion of the critical forces in Eq. �26� has been obtained from
the improved perturbation theory, and thus, it cannot be re-
produced within the Larkin-type models in which all observ-
ables depend only on ��0�. However, in the bare theory the
disorder correlator is an analytic function so that to make the
calculation consistent we have to first renormalize our
theory. To that end we replace the bare correlator by the
renormalized one. This can be viewed as a partial summation
of an infinite series of diagrams. If we want the distribution
of fc strictly to lowest order in �=4−d, then the work is
essentially done. However, we will demand a bit more and
take an additional effect into account: replacing the bare cor-
relator by the running one in a particular diagram we have to
be careful because the scale dependence acquired by the cor-
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relator may be in a form of either dependence on a mass �as
in quantities that do not contain integration over momentum�
or dependence on the loop momentum �which has to be in-
tegrated out�, or a combination of both. The final result pre-
sented here will thus be exact to lowest order in � and in
addition will contain some effects beyond that order �al-
though a full-fledge two-loop calculation is not attempted
here�. This will allow us to discuss in the next section some
extrapolations to low dimension.

Let us start from the renormalization of the first cumulant,
i.e., the average critical force �16�. We remind the reader that
the average critical force is a nonuniversal quantity and af-
terwards we will subtract it and consider the shifted distribu-
tion, which is a universal function. According to Eq. �6� the
renormalized disorder correlator acquires in the vicinity of
the fixed point a scale dependence. Integration over scales
beyond the Larkin scale yields �see Refs. �23,30� for details�

�fc�L��c � − �̃*��0+�
�2−�

2 − �
, �29�

where in this formula the UV cutoff � is meant to be the
minimal length of pinned segments of the manifold, i.e., the
Larkin length ��Lc

−1.
We now consider the renormalization of the second cumu-

lant �variance�. The corresponding bare expression can be
expressed through the two-point vertex function as follows:

�fc�L�2�c = L−d���0� − 

q

���0+�2

q4 � + O��3�

= L−d�ûû
�2,0��� = 0;q = 0� . �30�

As it was shown in Refs. �17,21�, the two-point vertex func-
tion does not depend on times and scales,

�ûû
�2��q� = L2�−�

1

Ĩ1�
�̃*�0�F2�qL� , �31�

with F2�z�=Bz�−2�+O�ln z /z2� for large z and F2�0�=1. Note
the constant B depends on the IR cutoff scheme �21�. Com-
bining Eqs. �30� and �31� we obtain

�fc�L�2�c = L2�−4 1

Ĩ1�
�̃*�0� . �32�

We note that this is consistent with the finite-size scaling
prediction

�fc�L�2�c � L−2/� �33�

using �=1/ �2−��. As we will show below, the full �shifted�
distribution is also consistent with this scaling.

To proceed further, let us first consider some typical dia-
grams contributing to the third cumulant of the critical force,
which are shown in Fig. 2. To renormalize them at lowest
order, we have replaced the disorder lines by the three-point
vertices defined as follows:

�ûûu
�2,1��t,t1,t2;q1,q2� = �ûûu

�+� �t,t1,t2;q1,q2� + �ûûu
�−� �t,t1,t2;q1,q2� .

�34�

At tree level, the vertex function �34� can be expressed by
diagrams shown in Fig. 3 and the corresponding expressions
read

�ûûu
�+� �t,t1,t2;q1,q2� = ���0+�sgn�t − t1���t − t2� , �35�

�ûûu
�−� �t,t1,t2;q1,q2� = ���0+�sgn�t1 − t���t1 − t2� . �36�

Then the summation of diagrams contributing to the nth cu-
mulant with n�2 can be carried out along the lines used for
the bare cumulant and gives

�fc�L�n�c = �− 1�n�n − 1�!L−d�n−1�

�

q



t1¯tn



�1¯�n

��ûûu
�2,1��t,t2,�1;q,− q�Rq,�1−t1

�

� ��ûûu
�2,1��t,t3,�2;q,− q�Rq,�2−t2

� ¯

���ûûu
�2,1��t,tn,�n−1;q,− q�Rq,�n−1−tn−1

�

���ûûu
�2,1��t,t1,�n;q,− q�Rq,�n−tn

� . �37�

Substituting the tree-level expressions �34�–�36� to Eq. �37�
we recover the bare cumulant �22�.

In the Appendix we compute the vertex function �ûûu
�+� to

one-loop order and obtain its large-q asymptotics, which
reads

FIG. 2. Example of diagrams contributing to the third cumulant
of the critical force. To renormalize these one-loop diagrams to the
lowest order we replace the disorder lines by vertices �ûûu

�+� �high-

lighted on the left diagram� and �ûûu
�−� �highlighted on the right dia-

gram�, which are defined in Eqs. �35� and �36� and depicted in
detail in Fig. 3.

FIG. 3. Vertex function �ûûu
�2,1��t , t1 , t2 ;q ,−q� at the tree level. The

functions are distinguished by whether the line entering at t2 and
outgoing at t1 is “closed” �ûûu

�−� , or “open” �ûûu
�+� . In the first case the

time ordering along the loop is continuous: t1� t2, while in the
second case it is interrupted, i.e., there are no restrictions on t1 and
t2 �see also Fig. 2�.
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t2

�ûûu
�+� �t,t1,t2;q,− q� = AL�−��qL��, �38�

where times t1 and t are taken infinitely apart �hence it is a
quasistatic quantity�. The amplitude A and the exponent �
are given by

A =
1

�Ĩ1

�̃�*�0+��1 + O���� , �39�

� =
4

9
� + O��2� , �40�

and we argue that � is a new exponent �see the Appendix�.
Taking into account this momentum dependence in Eq. �37�
should result in an improved renormalization scheme �com-
pared to simply replacing the bare quantities by q-
independent but scale-dependent renormalized parameters�
with a different form for the q summations appearing below.

After substituting Eq. �38� in Eq. �34�, the integration
over times can be performed in the same way as for the bare
cumulant and gives for n�2 �31�

�fc�L�n�c = − �n − 1�!AnLn��−2�Ld

q

1

�qL�n�2−�� . �41�

Note that A� �̃*��0+��0. To construct the characteristic
function let us redefine �→ �2��2−�� / ��A �L�−2�, which cor-
responds to measuring fc in units of �A�L�−2 / �2��2−�. This is

a nonuniversal scale as the value of �̃*��0+� is not universal
at the depinning transition. However as we now show, once
rescaled the �shifted� distribution is universal.

The characteristic function can be written as

ln P̂��� = −
1

2
�2�2 − �

k�Zd,k�0

�
n=3

	
1

n
� i�

�k�2−��n

, �42�

where

�2 =
�2��4�̃*�0�

A2Ĩ1�
= �Ĩ1

�̃*�0�

��̃�*�0��2
�2��4−2� =

6�2

�
�1 + O���� .

�43�

To compute this universal ratio to lowest order in � we have
used the one-loop FRG fixed-point equation evaluated at u

=0, i.e., ��−2���̃*�0�= �̃*��0+�2 and used �=� /3+O��2�, as

well as �Ĩ1=1/ �8�2�+O���. Summing over n we obtain

ln P̂��� = −
1

2
�2�2 + �

k�Zd,k�0

�i�
1

�k�2−� −
1

2
�2 1

�k�2�2−��

+ ln�1 −
i�

�k�2−��� . �44�

C. Lowest order in �=4−d

To obtain the distribution within the � expansion it is
sufficient to set �=0 in the formula above, and to compute

all sums in d=4. Let us first give the skewness and kurtosis
to lowest order in the � expansion. One uses �21�

�
k�Zd,k�0

1

�k�2p =
1

�p − 1�!
0

	

dt tp−1�
�3,0,e−t�d − 1� ,

�45�

�
k�Z4,k�0

1

�k�6
= 14.8298, �46�

�
k�Z4,k�0

1

�k�8
= 10.2454, �47�

where 
�3,0 ,e−t�=�k�Ze−tk2
is the elliptic theta function.

Hence

�3 =
�f − f̄�3

�3 =
2

�3 �
k�Zd,k�0

1

�k�6
�48�

=0.0650861�3/2, �49�

�4 =
�f − f̄�4

�4 − 3 = −
3!

�4 �
k�Z4,k�0

1

�k�8
�50�

=− 0.01753�2. �51�

Next one can resum to obtain the characteristic function to
lowest order in �;

ln P̂��� = −
1

2
�2�2 − F�− i�� , �52�

F�− i�� = 

0

	 dt

t
�ei�t − 1 − i�t +

1

2
�2t2��
�3,0,e−t�4 − 1� .

�53�

This result can be reexpressed as follows. As d→4−the
shifted dimensionless critical force

f̃ = �fc�L� − fc�L��/�fc�L�2c

becomes a univariate Gaussian random variable. For small

��0, f̃ can be �formally� expressed as the sum of two inde-

pendent random variables f̃ = f0+
��

�6�
f1 where f0 is a Gauss-

ian of variance 1+O��� and f1 is a random variable of order
unity with a nontrivial distribution, the logarithm of its char-
acteristic function being given �up to a quadratic term� by
F�−i��.

We now analyze the shape of these distributions in physi-
cal dimension.

D. Fourier inversion

In this section we compute the inverse Fourier transform
of Eq. �44� in physical dimensions, using our improved
scheme.
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Let us start by discussing d=1. We use a natural extrapo-
lation of our above result, setting �=3 in the above formulas
�which are exact to lowest order in ��. From Eq. �44� we
obtain

P̂��� = exp�− �2�2��
k=1

	 ��1 −
i�

k2/3�2

exp�i�
2

k2/3 − �2 1

k4/3�� ,

�54�

where we have used �=4/3 and �=��2. The inverse Fou-
rier transform computed numerically is shown in Fig. 4.
Equation �44� with �=0 can formally be considered as the
result of improved perturbation theory in nonanalytic disor-
der. The inverse Fourier transform of the latter is also shown
in Fig. 4 and cannot be visually distinguished from the
shifted renormalized distribution. The renormalized distribu-
tion is more appealing since it guarantees a non-negative
defined critical force, which is not the case for the bare one,
especially in d=1 where the bare averaged critical force �16�
is finite. By contrast the averaged renormalized critical force
is controlled by the UV cutoff and is of order Lc

−1/� while the
typical fluctuation is much smaller, of order L−1/�, in the limit
of interest, here L�Lc. It is interesting that the renormalized
distribution is well approximated by Eq. �54� in which we
keep only the first factor with k=1;

P̂��� � exp�−
1

2
�2�2���1 − i��2 exp�2i� − �2�� . �55�

The inverse Fourier transform of Eq. �55� reads

P�f� �
���2 + f + 4�2 − 2 − �2�

�2 + �2�5/2�2�
e−��2 + f�2/2�2+�2�� �56�

and is also shown in Fig. 4. The difference in the critical-
force distributions obtained within improved perturbation
theory, renormalized to one-loop theory and approximation
�56�, is indicated in Fig. 5.

For a d-dimensional system the Fourier transform of the
critical-force distribution �44� can be written as

P̂��� = exp�−
1

2
�2�2� �

k�Zd,k�0

��1 −
i�

�k�2−��
� exp�i�

1

�k�2−� −
1

2
�2 1

�k�2�2−���� . �57�

Analogously to the case d=1 the inverse Fourier transform
of Eq. �57� can be well approximated by

P̂��� = exp�−
1

2
�2�2���1 − i��2d exp�2di� − d�2�� ,

�58�

which does not depend on �.
We now compute the standard deviation and the kurtosis

of the above distributions. The standard deviation reads

�f − f̄�2 � �2. �59�

The skewness is defined as

�3 =
�f − f̄�3

�3 =
2

�3 �
k�Zd,k�0

1

�k�3�2−�� . �60�

For d=1 we obtain �3=�2/ �6���0.075 �0.046 for the dis-
tribution �56��. The positive value for the skewness indicates
that the right tail of the distribution is heavier than the left
tail.

The kurtosis for a Gaussian distribution is three. For this
reason, excess kurtosis is defined as

�4 =
�f − f̄�4

�4 − 3 = −
3!

�3 �
k�Zd,k�0

1

�k�4�2−�� . �61�

For d=1 we obtain �4=−3��8/3� /�4�−0.04 �−0.031 for
the distribution �56��. Here ��x� is the Riemann zeta function.
The small negative excess kurtosis indicates that the distri-
bution is slightly more flat than a Gaussian distribution,
while the deviation from the Gaussian distribution is quite
small.

IV. PERIODIC SYSTEMS

The renormalization of the critical-force distribution for
periodic systems requires a separate consideration. Indeed as

FIG. 4. The three indistinguishable curves for shifted critical-
force distribution �d=1�: improved perturbation theory ��=0�,
renormalized to one-loop theory and approximate expression �56�.
Here �=��2. The difference between distributions is shown in Fig.
5.

FIG. 5. �Color online� Shifted critical-force distribution for d
=1 with the Gaussian subtracted. The dashed lines: approximate
expression �56� and improved perturbation theory ��=0�; solid line:
renormalized to one-loop theory.
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was shown in Ref. �15�, in the periodic case there is an
additional relevant operator, which is the uniform part of
��u� so that the random periodic �RP� fixed point is unstable.
The flow equation for this operator can be derived by the
integration of the renormalization group. �RG� equation over
one period �17�

L�L

0

1

�̃�u�du = �

0

1

�̃�u�du + O��3� , �62�

where we have explicitly used �=0. Thus in the vicinity of
the RP FP, the flow of the dimensionless disorder is given by

�̃�u� = �̃*�u� + cL�, �63�

where the nonuniversal constant c can be estimated as �17�

c = Lc
−�


0

1

��̃�bare��u� − �̃*�u��du

= − Lc
−�


0

1

�̃*�u�du

= Lc
−�� �2

108
+ O���� � 0.

This runaway correction to the scaling behavior at the RP FP
contributes to all quantities that depend on ��0� but not to
those that depend on ���0�. Therefore in the case of a peri-
odic system the renormalized second cumulant of the critical
force reads

�fc�L�2�c =
1

Ĩ1�
�̃*�0�L−4 +

c

Ĩ1�
L−d. �64�

Higher-order cumulants are still given by Eq. �41� with �
=0 and therefore scale with L as �fc�L�n�c=L−2n. We would
like to emphasize that the correction to scaling in Eq. �64�
describes the sample-to-sample fluctuations and cannot be
seen in one sample because in each sample there is only one
pinned configuration. As a result, for d�4 only the second
cumulant of the scaled critical force, which scales as L−d,
survives in the limit L→	 resulting in �FS=2/d and a pure
Gaussian distribution for the scaled critical force.

V. DISCUSSION

In the present paper we have computed the renormalized
distribution P�f −
v� averaged over all pinned configura-
tions in the limit v→0+, which we identify with the critical-
force distribution PL�fc�. The average critical force is a non-
universal quantity, which depends on microscopic details of
the interactions like the UV cutoff as well as on details of the
disorder distribution. After subtraction of the average value,
the shifted distribution of the critical force contains only one
nonuniversal scale, which can be fixed, e.g., by fixing the
second cumulant. The resulting dimensionless distribution is
then fully universal, i.e., it does not depend on properties at
small scales. We have computed it taking into account only
the second cumulant of the bare disorder distribution, since it

is the only cumulant relevant in the RG sense. Higher cumu-
lants, which are generated by coarse graining are irrelevant
operators and their contribution to the cumulants of the criti-
cal force must carry additional dependence on the cutoff.
Hence we expect that they result only in a shift of the non-
universal expectation values.

Let us now discuss the role of the transverse sample size
M �size of the box�. In numerical studies of depinning of
elastic interfaces, either via an exact determination of the
critical state or via Langevin dynamics �20,27,28,32,33� a
cylindrical system, which is periodic in both directions, was
studied: longitudinal with period L and transverse with pe-
riod M. Hence this is equivalent to a periodic disorder with
period M. It is known that a periodic system has a unique
pinned configuration for any period M �34�. If M �L, this
configuration spreads out through the whole box Ld�M and
there is only one independent pinned configuration. As we
have shown for the RP class the distribution of critical forces
is Gaussian, and thus, for elastic interfaces in the limit L
→	 with M fixed, the distribution of the critical force also
becomes Gaussian.

The case where the period M is taken to infinity at the
same time as L is relevant for elastic interfaces and quite
different. The pinned interface has a rms width w=kwL� so
that in a sample of transverse size w it also has one unique
statistically independent pinned configuration. One may then
argue that its critical-force distribution is PL�fc� whose char-
acteristic function is given by Eq. �44�. In the numerical
studies one should thus be careful in choosing the size of the
periodic box M. If M scales like L�� with ���� the system
will cross over from the random manifold to the RP FP and
the finite-size scaling analysis will result in some mixture of
interface and periodic system properties, while the critical-
force distribution will tend to a Gaussian one. On the other
hand, if M �w, the sample can be divided into about M /w
subsamples, which can be argued to be �almost� statistically
independent, with independent pinned configurations. Each
configuration has a slightly different critical force, which is
distributed according to our FRG result. If one defines the
total critical force as a maximum of all the critical forces of
these subsamples, it becomes M dependent and its shifted
distribution tends to the distribution of the extreme value
statistics �28�. Following Ref. �28� let us introduce for every
configuration � of the interface in the sample of width M
=kL� the depinning force fd��� and then associate the thresh-
old force of the whole sample with the following maximal
value fc

r =max��fd����. In each sample there are only �M /w
independent pinned configurations, so that the distribution of
the maximum of the corresponding critical forces can be
written as

PM�fc
r,M/w� =

d

dfc
r�


−	

fc
r

df�PL�f��,�M/w

. �65�

According to the general theorem of extreme value statistics
�35�, for large samples, i.e., in the limit M /w→	 this distri-
bution approaches the Gumbel distribution. The latter is pro-
vided by the tails of the distribution of the critical force for
each independent pinning configuration, as given in Eq. �44�.
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According to this distribution the average maximal threshold
force of samples of size M behaves as ln�k /kw�. For large
samples with M �w it can be extremely large. The above
procedure completely washes out all details of the underly-
ing distribution PL�f� computed here, except for its width,
and replaces it by the model-independent function obtained
from extreme value statistics. As an illustration, we have
plotted the force distribution obtained using Eq. �65� for
M /w=10 in Fig. 6.

The above arguments suggest that the critical-force distri-
bution computed here via the FRG should be compared with
the numerics on a cylinder of aspect ratio parameter k�kw
defined above from the width. We now propose a more pre-
cise statement to identify the critical force computed in this
paper. We note that in the calculations performed here within
the FRG the position of the center of mass was held fixed
�since all momentum integrations excluded the uniform
mode q=0�. Hence we are working in the fixed center of
mass ensemble. This suggests the definition

fc�u0,L� = max
��u0,L�

�fd���u0,L��� , �66�

where the maximum is over all configurations ��u0 ,L� with
center of mass u0 and length L �and periodic boundary con-
ditions along the interface�. It can in principle be evaluated
numerically by direct enumeration for a discrete interface
model. One can then check that it has a well-defined L→	
limit with no need for a transverse box, and one can then
numerically compute the finite-size distribution for the en-
semble of ��u0 ,L�. This distribution should identify with the
one computed here within the FRG �in the massless scheme�.
It is a more fundamental object than the critical force defined
on a cylinder. The latter can then be retrieved in principle as

fc
r = max

u0

fc�u0,L� �67�

on the same cylinder, leading to extremal statistics, as dis-
cussed above.

The above considerations illustrate that the statistics of
the depinning threshold force at finite size is a rather subtle
question. Many questions remain open. It would be interest-
ing to find the proper steady state corresponding to the above
definition �66�. Also, a systematic study of memory effects in
the threshold force would be of high interest, especially re-
garding experiments. Indeed, these memory effects may be
of importance for aging �36� and hysteresis phenomena �37�
controlled in some regimes by the slow dynamics of domain
walls. There the observed threshold force may not be the
largest one but a threshold force that characterizes a piece of
the sample in which that interface got trapped. Hence the
data should be interpreted with care to disentangle history
effects from finite-size effects. It would be very interesting to
develop numerical schemes to investigate these questions, in
particular, an efficient algorithm to compute Eq. �66�.
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APPENDIX: CALCULATION OF THE ASYMPTOTICS
OF �ûûu

„+…

To renormalize the nth cumulant of the critical force we
need the leading asymptotics of the vertex functions �ûûu

�+� and

�ûûu
�−� . The latter is insensitive to the IR cutoff scheme up to

corrections to the amplitude. In order to extract this asymp-
totics, we adopt a massive scheme for the IR regularization
because it leads to the simplest calculations. If one then
needs the corresponding amplitude in a different scheme, one
can relate it to the amplitude in the massive scheme follow-
ing the methods developed in Ref. �38�.

Straightforward perturbation theory gives to first order in
the bare disorder denoted here �0 for the “open” vertex �ûûu

�+� ,



t2

�ûûu
�+� �t,t1,t2;q,− q�

= �0��0
+��1 − �0��0�


p
� 2

�p2 + m2���p + q�2 + m2�

+
1

�p2 + m2�2 + O�e−p2�t−t1���� , �A1�



t2

�ûûu
�−� �t,t1,t2;q,− q� = − 


t2

�ûûu
�+� �t,t1,t2;q,− q� . �A2�

Identity �A2� holds to all orders by definition. The last
term in Eq. �A1� reflects the dynamic nature of the vertex
�ûûu

�+� �t , t1 , t2 ;q ,−q�. However, if we integrated this term also
over t1 the result will not depend on the observation time t.
As a consequence, the nth cumulant of the critical force is

FIG. 6. �Color online� The normalized critical-force distribution
for d=1. The solid line is the distribution for the interface in the box
of size w given by Eq. �56�. The dashed line is the Gumbel distri-
bution, i.e., the distribution of the maximal threshold force in the
limit of an infinite box. The points are computed using Eq. �65� for
the interface in the finite box of size M =10w.
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determined by the quasistatic integrals �to any order in dis-
order�.

The easiest way to obtain Eq. �A1� is as follows: One
starts from the one-loop diagrams given in Fig. 7, expands to
first order in the fields u, and then replaces �0

�n��ut−ut�� by
�0

�n��0+��sgn�t− t���n. The diagrams are then split into the two
classes �ûûu

�−� and �ûûu
�+� , depending on whether the single field

u is connected to û�t1� or û�t2�. In order to extract the time-
independent terms, one chooses t− t1→	. This prescription
allows for an easy integration of all 16 diagrams �Refs.
�39,40��. Denoting

I1�q� = 

p

1

�p2 + m2���p + q�2 + m2�
= m−�Ĩ1�q/m� ,

�A3�

and Ĩ1= Ĩ1�0�, the contributions to Eq. �A1� are as follows:

− ��I1�q�� + �I1�0� + I1�q�� + �0� + �I1�0� − I1�0���

� �0��0��0��0� + ��− I1�0�� + �0� + �I1�0��

+ �0���0�0�,�0��0� , �A4�

where terms in rectangular brackets are in the order of their
appearance from diagrams �a�, �b�, �c�, and �d� of Fig. 7. We
remark that contributions proportional to �0�0��0��0� exactly
cancel, and we obtain Eq. �A1�.

To renormalize the vertex function �A1� we have to reex-
press the bare disorder correlator by the renormalized dimen-
sionless one,

�0�u� = m����u� + ����u�2 + ���u� − ��0�����u��Ĩ1� .

Differentiating the latter expression with respect to u we get

after rescaling ��u�= 1

�Ĩ1
m−2��̃�um��,

�0��0� =
m�−�

�Ĩ1

�̃��0+��1 +
3

�Ĩ1

�̃��0�m�

p

1

�p2 + m2�2� ,

�0��0� =
1

�Ĩ1

m��̃��0+� + O��̃��0�2,�̃��0+��̃��0+�� .

Omitting the last term in Eq. �A1� we obtain the following
expression for the renormalized vertex function:



t2

�ûûu
�+� �t,t1,t2;q,− q�

= m�−� 1

�Ĩ1

�̃��0+��1 − 2�̃��0�
1

�Ĩ1

m��I1�q� − I1�0��� .

Note that depinning of the nonperiodic systems is described

by the fixed point with �̃��0�*= 2
9�+O��2�. The one-loop in-

tegral Ĩ1�y� reads �17�

Ĩ1�y� =
1

2
Kd��d

2
����

2
�


0

1 d�

�1 + ��1 − ��y2��/2 , �A5�

where Kd=2�d/2 / ��2��d��d /2�� is the area of a
d-dimensional sphere divided by �2��d. Taking into account

that Ĩ1� Ĩ1�0�=	q�q2+1�−2= 1
2Kd�� d

2
��� �

2
� we obtain



t2

�ûûu
�+� �t,t1,t2;q,− q�

= m�−� 1

�Ĩ1

�̃�*�0+�

� �1 +
2

9
�


0

1

d� ln�1 + ��1 − ��y2� + O��2�� .

We are interested in the asymptotic behavior for z→	. In
this limit we have



0

1

d� ln�1 + ��1 − ��y2�

= − 2 +
�4 + y2

y
�ln 2 − ln�2 + y2 − y�4 + y2��

= − 2 + 2 ln y + O� ln y

y2 � .

Matching to a power-law asymptotic behavior we find

1 +
2

9
��− 2 + 2 ln y� + O��2� → y4�/9�1 −

4

9
�� . �A6�

As a result we obtain for q /m�1,



t2

�ûûu
�+� �t,t1,t2;q,− q� = m�−� 1

�Ĩ1

�̃�*�0+�� q

m
�4�/9�1 −

4

9
�� .

�A7�

Replacing m by 1/L we obtain Eq. �38�.

FIG. 7. One-loop dynamical diagrams correcting �.
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